Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:45:59
%S 0,21,70,147,252,385,546,735,952,1197,1470,1771,2100,2457,2842,3255,
%T 3696,4165,4662,5187,5740,6321,6930,7567,8232,8925,9646,10395,11172,
%U 11977,12810,13671,14560,15477,16422,17395,18396,19425,20482,21567,22680,23821,24990
%N a(n) = 7*n*(2*n + 1).
%C Sequence found by reading the line from 0, in the direction 0, 21,..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
%C Sum of the numbers from 6n to 8n. - _Wesley Ivan Hurt_, Dec 23 2015
%H Vincenzo Librandi, <a href="/A195026/b195026.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 14*n^2 + 7*n.
%F a(n) = 7*A014105(n). - _Bruno Berselli_, Oct 13 2011
%F From _Colin Barker_, Apr 09 2012: (Start)
%F a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
%F G.f.: 7*x*(3+x)/(1-x)^3. (End)
%F a(n) = Sum_{i=6n..8n} i. - _Wesley Ivan Hurt_, Dec 23 2015
%p A195026:=n->7*n*(2*n+1): seq(A195026(n), n=0..50); # _Wesley Ivan Hurt_, Dec 23 2015
%t Table[7*n*(2*n + 1), {n, 0, 50}] (* _Wesley Ivan Hurt_, Dec 23 2015 *)
%t LinearRecurrence[{3,-3,1},{0,21,70},50] (* _Harvey P. Dale_, Apr 26 2017 *)
%o (Magma) [14*n^2 +7*n: n in [0..50]]; // _Vincenzo Librandi_, Oct 14 2011
%o (PARI) a(n)=7*n*(2*n+1) \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Cf. A014105, A144555, A152760, A195019, A195020, A195021, A195023, A195024, A195025, A195320.
%Y Cf. A185019, A193053, A198017.
%K nonn,easy
%O 0,2
%A _Omar E. Pol_, Oct 13 2011