OFFSET
1,1
COMMENTS
From Table 1, p. 7 of MacLeod.
LINKS
N. Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction, arXiv:math/0005139 [math.NT], 2000.
N. Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction, in Algorithmic Number Theory (Leiden 2000), Lecture Notes in Computer Science 1838, Springer 2000.
A.-S. Elsenhans, J. Jahnel, New sums of three cubes, Math. Comp. 78 (2009) 1227-1230.
K. Koyama, On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n, Math. Comp. 69 (2000) 1735-1742.
Allan J. MacLeod, New Solutions of d=2x^3+y^3+z^3, arXiv:1109.2396v1 [math.NT], Sep 12, 2011.
EXAMPLE
1247 = 2*26478194^3 + 108525095^3 + (-109565866)^3.
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Jonathan Vos Post, Sep 12 2011
STATUS
approved