This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194966 Interspersion fractally induced by A194965, a rectangular array, by antidiagonals. 4
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 17, 22, 25, 26, 27, 28, 23, 24, 29, 33, 34, 35, 36, 30, 31, 32, 37, 42, 43, 44, 45, 38, 39, 40, 41, 46, 52, 53, 54, 55, 47, 48, 49, 50, 51, 56, 63, 64, 65, 66, 57, 59, 60, 61, 62, 58, 67, 75, 76 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  Every pair of rows eventually intersperse.  As a sequence, A194966 is a permutation of the positive integers, with inverse A194967. LINKS EXAMPLE Northwest corner: 1...2...4...7...11..16 3...5...8...12..18..25 6...9...13..19..26..34 10..14..20..27..35..44 15..21..28..36..45..55 MATHEMATICA p[n_] := Floor[(n + 4)/5] + Mod[n - 1, 5] Table[p[n], {n, 1, 90}]  (* A053824(n+5), n>=0 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20]   (* A194965 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194966 *) q[n_] := Position[w, n]; Flatten[ Table[q[n], {n, 1, 80}]]  (* A194967 *) CROSSREFS Cf. A194959, A194965, A194967. Sequence in context: A179978 A023771 A132033 * A133137 A160543 A023810 Adjacent sequences:  A194963 A194964 A194965 * A194967 A194968 A194969 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .