login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194965 Fractalization of (A053824(n+5)), n>=0. 3
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 6, 2, 3, 4, 5, 1, 6, 7, 2, 3, 4, 5, 1, 6, 7, 8, 2, 3, 4, 5, 1, 6, 7, 8, 9, 2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 12, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 12, 13, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (A053724(n+5)), n>=0 is formed by concatenating 5-tuples of the form (n,n+1,n+2, n+3,n+4) for n>=1:  1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,...

LINKS

Table of n, a(n) for n=1..94.

MATHEMATICA

p[n_] := Floor[(n + 4)/5] + Mod[n - 1, 5]

Table[p[n], {n, 1, 90}]  (* A053824(n+5), n>=0 *)

g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]

f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]

f[20]   (* A194965 *)

row[n_] := Position[f[30], n];

u = TableForm[Table[row[n], {n, 1, 5}]]

v[n_, k_] := Part[row[n], k];

w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},

{k, 1, n}]]  (* A194966 *)

q[n_] := Position[w, n]; Flatten[

Table[q[n], {n, 1, 80}]]  (* A194967 *)

CROSSREFS

Cf. A194959, A194965, A194966, A194967.

Sequence in context: A243730 A133994 A066041 * A243712 A256553 A194896

Adjacent sequences:  A194962 A194963 A194964 * A194966 A194967 A194968

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 22:38 EDT 2019. Contains 325278 sequences. (Running on oeis4.)