This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194959 Fractalization of (1 + floor(n/2)). 57
 1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 12, 10, 8, 6, 4, 2, 1, 3, 5 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Suppose that p(1), p(2), p(3), ... is an integer sequence satisfying 1 <= p(n) <= n for n >= 1. Define g(1)=(1) and for n > 1, form g(n) from g(n-1) by inserting n so that its position in the resulting n-tuple is p(n). The sequence f obtained by concatenating g(1), g(2), g(3), ... is clearly a fractal sequence, here introduced as the fractalization of p. The interspersion associated with f is here introduced as the interspersion fractally induced by p, denoted by I(p); thus, the k-th term in the n-th row of I(p) is the position of the k-th n in f. Regarded as a sequence, I(p) is a permutation of the positive integers; its inverse permutation is denoted by Q(p). ... Example: Let p=(1,2,2,3,3,4,4,5,5,6,6,7,7,...)=A008619. Then g(1)=(1), g(2)=(1,2), g(3)=(1,3,2), so that f=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,1,3,5,6,4,2,1,...)=A194959; and I(p)=A057027, Q(p)=A064578. The interspersion I(P) has the following northwest corner, easily read from f:   1  2  4  7 11 16 22   3  6 10 15 21 28 36   5  8 12 17 23 30 38   9 14 20 27 35 44 54   ... Following is a chart of selected p, f, I(p), and Q(p):    p         f        I(p)      Q(p) A000027   A002260   A000027   A000027 A008619   A194959   A057027   A064578 A194960   A194961   A194962   A194963 A053824   A194965   A194966   A194967 A053737   A194973   A194974   A194975 A019446   A194968   A194969   A194970 A049474   A194976   A194977   A194978 A194979   A194980   A194981   A194982 A194964   A194983   A194984   A194985 A194986   A194987   A194988   A194989 Count odd numbers up to n, then even numbers down from n. - Franklin T. Adams-Watters, Jan 21 2012 This sequence defines the square array A(n,k), n > 0 and k > 0, read by antidiagonals and the triangle T(n,k) = A(n+1-k,k) for 1 <= k <= n read by rows (see Formula and Example). - Werner Schulte, May 27 2018 REFERENCES Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168. LINKS Wikipedia, Fractal sequence MathWorld, Fractal sequence MathWorld, Interspersion FORMULA From Werner Schulte, May 27 2018 and Jul 10 2018: (Start) Seen as a triangle: It seems that the triangle T(n,k) for 1 <= k <= n (see Example) is the mirror image of A210535. Seen as a square array A(n,k) and as a triangle T(n,k): A(n,k) = 2*k-1 for 1 <= k <= n, and A(n,k) = 2*n for 1 <= n < k. A(n+1,k+1) = A(n,k+1) + A(n,k) - A(n-1,k) for k > 0 and n > 1. A(n,k) = A(k,n) - 1 for n > k >= 1. P(n,x) = Sum_{k>0} A(n,k)*x^(k-1) = (1-x^n)*(1-x^2)/(1-x)^3 for n >= 1. Q(y,k) = Sum_{n>0} A(n,k)*y^(n-1) = 1/(1-y) for k = 1 and Q(y,k) = Q(y,1) + P(k-1,y) for k > 1. G.f.: Sum_{n>0, k>0} A(n,k)*x^(k-1)*y^(n-1) = (1+x)/((1-x)*(1-y)*(1-x*y)). Sum_{k=1..n} A(n+1-k,k) = Sum_{k=1..n} T(n,k) = A000217(n) for n > 0. Sum_{k=1..n} (-1)^(k-1) * A(n+1-k,k) = Sum_{k=1..n} (-1)^(k-1) * T(n,k) = A219977(n-1) for n > 0. Product_{k=1..n} A(n+1-k,k) = Product_{k=1..n} T(n,k) = A000142(n) for n > 0. A(n+m,n) = A005408(n-1) for n > 0 and some fixed m >= 0. A(n,n+m) = A005843(n) for n > 0 and some fixed m > 0. Let A_m be the upper left part of the square array A(n,k) with m rows and m columns. Then det(A_m) = 1 for some fixed m > 0. The P(n,x) satisfy the recurrence equation P(n+1,x) = P(n,x) + x^n*P(1,x) for n > 0 and initial value P(1,x) = (1+x)/(1-x). Let B(n,k) be multiplicative with B(n,p^e) = A(n,e+1) for e >= 0 and some fixed n > 0. That yields the Dirichlet g.f.: Sum_{k>0} B(n,k)/k^s = (zeta(s))^3/(zeta(2*s)*zeta(n*s)). Sum_{k=1..n} A(k,n+1-k)*A209229(k) = 2*n-1. (conjectured) (End) EXAMPLE The sequence p=A008619 begins with 1,2,2,3,3,4,4,5,5,..., so that g(1)=(1). To form g(2), write g(1) and append 2 so that in g(2) this 2 has position p(2)=2: g(2)=(1,2). Then form g(3) by inserting 3 at position p(3)=2: g(3)=(1,3,2), and so on. The fractal sequence A194959 is formed as the concatenation g(1)g(2)g(3)g(4)g(5)...=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,...). From Werner Schulte, May 27 2018: (Start) This sequence seen as a square array read by antidiagonals:   n\k: 1  2  3  4  5   6   7   8   9  10  11  12 ...   ===================================================    1   1  2  2  2  2   2   2   2   2   2   2   2 ... (see A040000)    2   1  3  4  4  4   4   4   4   4   4   4   4 ... (see A113311)    3   1  3  5  6  6   6   6   6   6   6   6   6 ...    4   1  3  5  7  8   8   8   8   8   8   8   8 ...    5   1  3  5  7  9  10  10  10  10  10  10  10 ...    6   1  3  5  7  9  11  12  12  12  12  12  12 ...    7   1  3  5  7  9  11  13  14  14  14  14  14 ...    8   1  3  5  7  9  11  13  15  16  16  16  16 ...    9   1  3  5  7  9  11  13  15  17  18  18  18 ...   10   1  3  5  7  9  11  13  15  17  19  20  20 ...   etc. This sequence seen as a triangle read by rows:   n\k:  1  2  3  4  5   6   7   8   9  10  11  12  ...   ======================================================    1    1    2    1  2    3    1  3  2    4    1  3  4  2    5    1  3  5  4  2    6    1  3  5  6  4   2    7    1  3  5  7  6   4   2    8    1  3  5  7  8   6   4   2    9    1  3  5  7  9   8   6   4   2   10    1  3  5  7  9  10   8   6   4   2   11    1  3  5  7  9  11  10   8   6   4   2   12    1  3  5  7  9  11  12  10   8   6   4   2   etc. (End) MATHEMATICA r = 2; p[n_] := 1 + Floor[n/r] Table[p[n], {n, 1, 90}]  (* A008619 *) g = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f = g; f[n_] := Join[f[n - 1], g[n]] f (* A194959 *) row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A057027 *) q[n_] := Position[w, n]; Flatten[ Table[q[n], {n, 1, 80}]]  (* A064578 *) Flatten[FoldList[Insert[#1, #2, Floor[#2/2] + 1] &, {}, Range]] (* Birkas Gyorgy, Jun 30 2012 *) CROSSREFS Cf. A000142, A000217, A005408, A005843, A008619, A057027, A064578, A209229, A210535, A219977; A000012 (col 1), A157532 (col 2), A040000 (row 1), A113311 (row 2); A194029 (introduces the natural fractal sequence and natural interspersion of a sequence - different from those introduced at A194959). Sequence in context: A194968 A194980 A323607 * A194921 A195079 A124458 Adjacent sequences:  A194956 A194957 A194958 * A194960 A194961 A194962 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 06 2011 EXTENSIONS Name corrected by Franklin T. Adams-Watters, Jan 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 07:23 EDT 2019. Contains 325216 sequences. (Running on oeis4.)