login
A194911
Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=2^(1/3).
4
1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 2, 6, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 3, 7, 11, 4, 8, 12
OFFSET
1,3
COMMENTS
See A194832 for a general discussion. The triangle is not equal to A194841.
EXAMPLE
First nine rows:
1
1 2
1 2 3
4 1 2 3
4 1 5 2 3
4 1 5 2 6 3
4 1 5 2 6 3 7
4 8 1 5 2 6 3 7
4 8 1 5 9 2 6 3 7
MATHEMATICA
r = 2^(1/3);
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 20}]] (* A194911 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194912 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194913 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 05 2011
STATUS
approved