login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194906 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion. 4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 29, 38, 40, 41, 42, 43, 44, 45, 37, 39, 47, 49, 51, 52, 53, 54, 55, 46, 48, 50, 57, 59, 61, 63, 64, 65, 66, 56, 58, 60, 62, 68, 70, 72 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A194832 for a general discussion.

LINKS

Table of n, a(n) for n=1..69.

EXAMPLE

Northwest corner:

1...2...4...7...11..16..22

3...5...8...12..17..23..31

6...9...13..18..24..32..41

10..14..19..25..33..42..52

15..20..26..34..43..53..64

MATHEMATICA

r = Pi;

t[n_] := Table[FractionalPart[k*r], {k, 1, n}];

f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 20}]]  (* A194905 *)

TableForm[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 15}]]

row[n_] := Position[f, n];

u = TableForm[Table[row[n], {n, 1, 20}]]

g[n_, k_] := Part[row[n], k];

p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},

{k, 1, n}]]  (* A194906 *)

q[n_] := Position[p, n]; Flatten[Table[q[n],

{n, 1, 80}]]  (* A194907 *)

CROSSREFS

Cf. A194832, A194905, A194907.

Sequence in context: A226537 A153679 A273887 * A160546 A087143 A080683

Adjacent sequences:  A194903 A194904 A194905 * A194907 A194908 A194909

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Sep 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 04:20 EDT 2020. Contains 333292 sequences. (Running on oeis4.)