The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194835 Triangular array (and fractal sequence):  row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(2). 5
 1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 10, 5, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6, 1, 13, 8, 3, 10, 5, 12, 7, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194832 for a general discussion. LINKS EXAMPLE First nine rows: 1 2 1 2 1 3 2 4 1 3 2 4 1 3 5 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 8 3 5 7 2 9 4 6 1 8 3 5 MATHEMATICA r = -Sqrt[2]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]  (* A194835 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194836 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]]  (* A194837 *) CROSSREFS Cf. A194832, A194836, A194837. Sequence in context: A259771 A194902 A194874 * A054065 A194868 A304574 Adjacent sequences:  A194832 A194833 A194834 * A194836 A194837 A194838 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 05:19 EDT 2020. Contains 334815 sequences. (Running on oeis4.)