login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194827 2-adic valuation of the number of n X n Alternating Sign Matrices (A005130(n)). 3
0, 1, 0, 1, 0, 2, 2, 3, 2, 2, 0, 2, 2, 4, 4, 5, 4, 4, 2, 2, 0, 3, 4, 6, 6, 7, 6, 8, 8, 10, 10, 11, 10, 10, 8, 8, 6, 7, 6, 6, 4, 3, 0, 3, 4, 7, 8, 10, 10, 11, 10, 11, 10, 13, 14, 16, 16, 17, 16, 18, 18, 20, 20, 21, 20, 20, 18, 18, 16, 17, 16, 16, 14, 13, 10, 11, 10, 11, 10, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Kenny Lau, Table of n, a(n) for n = 1..9999

C. Heuberger, H. Prodinger, A precise description of the p-adic valuation of the number of alternating sign matrices, Intl. J. Numb. Th. 7 (1) (2011) 57-69.

FORMULA

a(n) = A007814(A005130(n)).

MAPLE

Sp := proc(n, p) add(d, d=convert(n, base, p)) ; end proc:

nuA005130 := proc(n, p) add(Sp(n+j, p), j=0..n-1)-add(Sp(3*j+1, p), j=0..n-1) ; %/(p-1) ; end proc:

A194827 := proc(n) nuA005130(n, 2) ; end proc:

PROG

(Python)

# a(n) = prod(k=0, n-1, (3k+1)!/(n+k)!)

# a(n+1) = prod(k=0, n, (3k+1)!/(n+k+1)!)

# a(n+1) = prod(k=0, n, (3k+1)!/(n+k)!) prod(k=0, n, 1/(n+k+1))

# a(n+1)/a(n) = [(3n+1)!/(2n)!] [n!/(2n+1)!]

n=10000; N=3*n+1; val=[0]*(N+1); exp=2

while exp <= N:

....for j in range(exp, N+1, exp): val[j] += 1

....exp *= 2

fac_val=[0]*(N+1)

for i in range(N): fac_val[i+1] = fac_val[i] + val[i+1]

res=0

for i in range(1, n): print(i, res); res += fac_val[3*i+1] + fac_val[i] - fac_val[2*i] - fac_val[2*i+1]

# Kenny Lau, Jun 09 2018

CROSSREFS

Cf. A005130, A007814, A227833.

Sequence in context: A237619 A156747 A318958 * A219237 A138774 A156988

Adjacent sequences:  A194824 A194825 A194826 * A194828 A194829 A194830

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Sep 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 12:09 EST 2018. Contains 317276 sequences. (Running on oeis4.)