

A194798


Numbers n having the same parity as the number of partitions of n.


6



1, 2, 3, 5, 7, 8, 10, 13, 17, 22, 23, 26, 28, 29, 30, 33, 34, 35, 37, 39, 40, 41, 42, 43, 46, 49, 50, 51, 53, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 81, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 96, 98, 99, 100, 105, 106, 107, 108, 110, 111
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Odd positive integers with an odd number of partitions and even positive integers with an even number of partitions.  Omar E. Pol, Mar 17 2012
Union of A067567 and A127219. Note that the union of A163096 and A163097 gives A209920 and the union of A209920 and this sequence gives A001477.  Omar E. Pol, Mar 22 2012


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000
K. Ono, Parity of the partition function, Electronic Research Announcements of AMS, Vol. 1, 1995, pp. 3542; MR 96d:11108


EXAMPLE

10 is in the sequence because the number of partitions of 10 is equal to 42 and both 10 and 42 have the same parity.


MAPLE

with(combinat):
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n1))
while irem(k+numbpart(k), 2)=1 do od; k
end:
seq(a(n), n=1..80); # Alois P. Heinz, Mar 16 2012


MATHEMATICA

Select[Range[200], Mod[PartitionsP[#]  #, 2] == 0 &] (* T. D. Noe, Mar 16 2012 *)


CROSSREFS

Cf. A000041, A040051, A052001, A052003, A067567, A127219, A154795A154798, A163096, A163097, A163998, A194807, A209658, A209659, A209920.
Sequence in context: A060107 A159556 A219643 * A302245 A028728 A286758
Adjacent sequences: A194795 A194796 A194797 * A194799 A194800 A194801


KEYWORD

nonn,easy


AUTHOR

Omar E. Pol, Jan 29 2012


EXTENSIONS

More terms from Alois P. Heinz, Mar 16 2012


STATUS

approved



