login
A194710
Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (10 + m).
9
42, 15, 27, 10, 14, 18, 5, 10, 10, 17, 4, 5, 8, 10, 15, 2, 5, 4, 8, 9, 14, 2, 2, 4, 5, 7, 9, 13, 1, 2, 2, 4, 4, 8, 8, 13, 1, 1, 2, 2, 4, 4, 7, 9, 12, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12
OFFSET
1,1
COMMENTS
Sub-triangle of A182703 and also of A194812. Note that the sum of row k is also the number of partitions of 10. For further information see A182703 and A135010.
FORMULA
T(k,m) = A182703(10+m,k), with T(k,m) = 0 if k > 10+m.
T(k,m) = A194812(10+m,k).
Beginning with row k=11 each row starts with (k-11) 0's and ends with the subsequence 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, the initial terms of A002865. - Alois P. Heinz, Feb 15 2012
EXAMPLE
Triangle begins:
42;
15, 27;
10, 14, 18;
5, 10, 10, 17;
4, 5, 8, 10, 15;
2, 5, 4, 8, 9, 14;
2, 2, 4, 5, 7, 9, 13;
1, 2, 2, 4, 4, 8, 8, 13;
1, 1, 2, 2, 4, 4, 7, 9, 12;
0, 1, 1, 2, 2, 4, 4, 7, 8, 13;
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
....
For k = 1 and m = 1; T(1,1) = 42 because there are 42 parts of size 1 in the last section of the set of partitions of 11, since 10 + m = 11, so a(1) = 42. For k = 2 and m = 1; T(2,1) = 15 because there are 15 parts of size 2 in the last section of the set of partitions of 11, since 10 + m = 11, so a(2) = 15.
CROSSREFS
Always the sum of row k = p(10) = A000041(10) = 42.
The first (0-10) members of this family of triangles are A023531, A129186, A194702-A194709, this sequence.
Sequence in context: A371699 A091747 A030434 * A334148 A033362 A033976
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Feb 05 2012
STATUS
approved