login
A triangle whose rows add up to the numerators of the Bernoulli numbers (with B(1) = 1/2). T(n, k) for n >= 0, 0 <= k <= n.
3

%I #28 Aug 20 2022 07:31:32

%S 1,0,1,0,-3,4,0,1,-4,3,0,-15,140,-270,144,0,1,-20,75,-96,40,0,-21,868,

%T -5670,13104,-12600,4320,0,1,-84,903,-3360,5600,-4320,1260,0,-15,2540,

%U -43470,244944,-630000,820800,-529200,134400,0,1,-340,9075,-74592,278040,-544320,582120,-322560,72576

%N A triangle whose rows add up to the numerators of the Bernoulli numbers (with B(1) = 1/2). T(n, k) for n >= 0, 0 <= k <= n.

%F T(n, k) = (-1)^(n - k) * A131689(n, k) * A141056(n) / (k + 1).

%F Sum_{k=0..n} T(n, k) = A164555(n).

%F T(n, n) = A325871(n).

%e [0] 1;

%e [1] 0, 1;

%e [2] 0, -3, 4;

%e [3] 0, 1, -4, 3;

%e [4] 0, -15, 140, -270, 144;

%e [5] 0, 1, -20, 75, -96, 40;

%e [6] 0, -21, 868, -5670, 13104, -12600, 4320;

%e [7] 0, 1, -84, 903, -3360, 5600, -4320, 1260;

%p A194587 := proc(n, k) local i;

%p mul(i, i = select(isprime, map(i -> i + 1, numtheory[divisors](n)))):

%p (-1)^(n-k)*Stirling2(n, k) * k! / (k + 1): %%*% end:

%p seq(print(seq(A194587(n, k), k = 0..n)), n = 0..7);

%t T[n_, k_] := Times @@ Select[Divisors[n]+1, PrimeQ] (-1)^(n-k) StirlingS2[n, k]* k!/(k+1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 26 2019 *)

%Y Cf. A027641, A131689, A141056, A325871.

%K sign,tabl

%O 0,5

%A _Peter Luschny_, Sep 17 2011

%E Edited by _Peter Luschny_, Jun 26 2019

%E Edited and flipped signs in odd indexed rows by _Peter Luschny_, Aug 20 2022