login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194583 Triangle T(n,k) with T(n,0)=1 and T(n,k) = (2^(n+1)-2^k)*T(n,k-1)+T(n+1,k-1) otherwise. 1
1, 1, 3, 1, 7, 43, 1, 15, 211, 2619, 1, 31, 931, 26251, 654811, 1, 63, 3907, 234795, 13255291, 662827803, 1, 127, 16003, 1985131, 238658491, 26961325147, 2699483026843, 1, 255, 64771, 16323819, 4050110011, 973958217435, 220115609012251, 44102911693372059, 1, 511, 260611, 132393451, 66733574971, 33115631264731, 15928113739803931, 7200501591899676571, 2886238576935227688091 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..44.

G. Helms, Number array not found in OEIS, SeqFan list Aug 27 2011

FORMULA

T(n,1)= A000225(n+1).

T(n,2) = (2^(n+1)-4)*(2^(n+1)-1)+2^(n+2)-1.

T(n,k) = -sum_{j=1..k+1} A158474(k+1,j)*T(n-j,k) assuming the symmetric extension T(n,k)=T(k,n).

EXAMPLE

The triangle starts in row n=0 as:

1;

1,3;

1,7,43;

1,15,211,2619;

1,31,931,26251,654811;

MAPLE

A194583 := proc(n, k) option remember; if n=0 or k=0 then 1; elif k> n then

return procname(k, n); else (2^(n+1)-2^k)*procname(n, k-1)+procname(n+1, k-1) ; end if;

end proc:

MATHEMATICA

t[_, 0] = 1; t[n_, k_] := t[n, k] = (2^(n+1)-2^k)*t[n, k-1]+t[n+1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 10 2014 *)

CROSSREFS

Sequence in context: A232149 A282422 A282685 * A060487 A285020 A165781

Adjacent sequences:  A194580 A194581 A194582 * A194584 A194585 A194586

KEYWORD

nonn,tabl

AUTHOR

R. J. Mathar, Aug 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 17:10 EDT 2017. Contains 286985 sequences.