login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194583 Triangle T(n,k) with T(n,0)=1 and T(n,k) = (2^(n+1)-2^k)*T(n,k-1)+T(n+1,k-1) otherwise. 1
1, 1, 3, 1, 7, 43, 1, 15, 211, 2619, 1, 31, 931, 26251, 654811, 1, 63, 3907, 234795, 13255291, 662827803, 1, 127, 16003, 1985131, 238658491, 26961325147, 2699483026843, 1, 255, 64771, 16323819, 4050110011, 973958217435, 220115609012251, 44102911693372059, 1, 511, 260611, 132393451, 66733574971, 33115631264731, 15928113739803931, 7200501591899676571, 2886238576935227688091 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..44.

G. Helms, Number array not found in OEIS, SeqFan list Aug 27 2011

FORMULA

T(n,1)= A000225(n+1).

T(n,2) = (2^(n+1)-4)*(2^(n+1)-1)+2^(n+2)-1.

T(n,k) = -sum_{j=1..k+1} A158474(k+1,j)*T(n-j,k) assuming the symmetric extension T(n,k)=T(k,n).

EXAMPLE

The triangle starts in row n=0 as:

1;

1,3;

1,7,43;

1,15,211,2619;

1,31,931,26251,654811;

MAPLE

A194583 := proc(n, k) option remember; if n=0 or k=0 then 1; elif k> n then

return procname(k, n); else (2^(n+1)-2^k)*procname(n, k-1)+procname(n+1, k-1) ; end if;

end proc:

MATHEMATICA

t[_, 0] = 1; t[n_, k_] := t[n, k] = (2^(n+1)-2^k)*t[n, k-1]+t[n+1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 10 2014 *)

CROSSREFS

Sequence in context: A232149 A282422 A282685 * A060487 A285020 A165781

Adjacent sequences:  A194580 A194581 A194582 * A194584 A194585 A194586

KEYWORD

nonn,tabl

AUTHOR

R. J. Mathar, Aug 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 08:12 EST 2017. Contains 294962 sequences.