login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194532 Jordan function ratio J_6(n)/J_2(n). 1
1, 21, 91, 336, 651, 1911, 2451, 5376, 7371, 13671, 14763, 30576, 28731, 51471, 59241, 86016, 83811, 154791, 130683, 218736, 223041, 310023, 280371, 489216, 406875, 603351, 597051, 823536, 708123, 1244061, 924483, 1376256, 1343433, 1760031, 1595601, 2476656, 1875531, 2744343 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Multiplicative with a(p^e) = p^(4*(e-1))*(p^2+p+1)*(p^2-p+1), e>0.

Dirichlet convolution of A000583 with the multiplicative function which starts 1, 5, 10, 0, 26, 50, 50, 0, 0, 130, 122, 0, 170, 250, 260, 0, 290,..

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A069091(n)/A007434(n).

Dirichlet generating function zeta(s-4)*product_{primes p} (1+p^(2-s)+p^(-s)).

MAPLE

f:= proc(n) local t;

     mul(t[1]^(4*(t[2]-1))*((t[1]^2+1)^2-t[1]^2), t=ifactors(n)[2])

end proc:

map(f, [$1..100]); # Robert Israel, Jun 14 2016

MATHEMATICA

JordanTotient[n_, k_: 1] := DivisorSum[n, #^k MoebiusMu[n/#] &] /; (n > 0) && IntegerQ@ n; Table[JordanTotient[n, 6]/JordanTotient[n, 2], {n, 12}] (* Michael De Vlieger, Jun 14 2016, after Enrique Pérez Herrero at A065959 *)

CROSSREFS

Cf. A065959.

Sequence in context: A225705 A259758 A203173 * A065827 A318036 A143843

Adjacent sequences:  A194529 A194530 A194531 * A194533 A194534 A194535

KEYWORD

nonn,mult,easy

AUTHOR

R. J. Mathar, Aug 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:46 EST 2018. Contains 318148 sequences. (Running on oeis4.)