login
First coordinate of (3,8)-Lagrange pair for n.
3

%I #15 Dec 29 2020 10:50:47

%S 3,-2,1,4,-1,2,5,0,3,4,1,4,-1,2,5,0,3,6,1,4,5,2,5,0,3,6,1,4,7,2,5,6,3,

%T 6,1,4,7,2,5,8,3,6,7,4,7,2,5,8,3,6,9,4,7,8,5,8,3,6,9,4,7,10,5,8,9,6,9,

%U 4,7,10,5,8,11,6,9,10,7,10,5,8,11,6,9,12,7,10,11,8,11,6,9

%N First coordinate of (3,8)-Lagrange pair for n.

%C See A194508.

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,1,-1).

%F From _Chai Wah Wu_, Jan 21 2020: (Start)

%F a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12.

%F G.f.: x*(-3*x^10 + x^9 + 3*x^8 - 5*x^7 + 3*x^6 + 3*x^5 - 5*x^4 + 3*x^3 + 3*x^2 - 5*x + 3)/(x^12 - x^11 - x + 1). (End)

%F a(n) = 3*n - 6*floor((4*n + 3)/11) - 2*floor((4*n + 4)/11). - _Ridouane Oudra_, Dec 29 2020

%e This table shows (x(n),y(n)) for 1<=n<=13:

%e n..... 1..2..3..4..5..6..7..8..9..10..11..12..13

%e x(n).. 3.-2..1..4.-1..2..5..0..3..4...1...4..-1

%e y(n). -1..1..0.-1..1..0..3..1..0.-1...1...0...2

%t c = 3; d = 8;

%t x1 = {3, -2, 1, 4, -1, 2, 5, 0, 3, 4, 1};

%t y1 = {-1, 1, 0, -1, 1, 0, 3, 1, 0, -1, 1};

%t x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]

%t y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]

%t Table[x[n], {n, 1, 100}] (* A194520 *)

%t Table[y[n], {n, 1, 100}] (* A194521 *)

%t r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]

%t TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]

%Y Cf. A194508, A194521.

%K sign

%O 1,1

%A _Clark Kimberling_, Aug 28 2011