login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194516 First coordinate of (3,5)-Lagrange pair for n. 3

%I

%S 2,-1,1,3,0,2,-1,1,3,0,2,4,1,3,0,2,4,1,3,5,2,4,1,3,5,2,4,6,3,5,2,4,6,

%T 3,5,7,4,6,3,5,7,4,6,8,5,7,4,6,8,5,7,9,6,8,5,7,9,6,8,10,7,9,6,8,10,7,

%U 9,11,8,10,7,9,11,8,10,12,9,11,8,10,12,9,11,13,10,12,9,11,13,10,12,14,11,13,10

%N First coordinate of (3,5)-Lagrange pair for n.

%C See A194508.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%F From _Chai Wah Wu_, Jan 21 2020: (Start)

%F a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9.

%F G.f.: x*(2*x^7 - 3*x^6 + 2*x^5 - 3*x^4 + 2*x^3 + 2*x^2 - 3*x + 2)/(x^9 - x^8 - x + 1). (End)

%e This table shows (x(n),y(n)) for 1<=n<=13:

%e n...... 1..2..3..4..5..6..7..8..9..10..11..12..13

%e x(n)... 2.-1..1..3..0..2.-1..1..3..0...2...4...1

%e y(n).. -1..1..0.-1..1..0..2..1..0..2...1...0...2

%t c = 3; d = 5;

%t x1 = {2, -1, 1, 3, 0, 2, -1, 1}; y1 = {-1, 1, 0, -1, 1, 0, 2, 1};

%t x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]

%t y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]

%t Table[x[n], {n, 1, 100}] (* A194516 *)

%t Table[y[n], {n, 1, 100}] (* A194517 *)

%t r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]

%t TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]

%Y Cf. A194508, A194517.

%K sign

%O 1,1

%A _Clark Kimberling_, Aug 28 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 10:03 EDT 2020. Contains 337268 sequences. (Running on oeis4.)