login
A194452
Total number of repeated parts in all partitions of n.
5
0, 0, 2, 3, 8, 12, 24, 35, 60, 87, 136, 192, 287, 396, 567, 773, 1074, 1439, 1958, 2587, 3454, 4514, 5931, 7666, 9951, 12736, 16341, 20743, 26354, 33184, 41807, 52262, 65329, 81144, 100721, 124344, 153390, 188303, 230940, 282063, 344100, 418242, 507762
OFFSET
0,3
LINKS
FORMULA
a(n) = A006128(n) - A024786(n+1).
a(n) = Sum_{k=2..n} k*A264405(n,k). - Alois P. Heinz, Dec 07 2015
G.f.: g = Sum_{j>0} (x^{2*j}*(2 - x^j)/(1-x^j))/Product_{k>0}(1 - x^k) (obtained by logarithmic differentiation of the bivariate g.f. given in A264405). - Emeric Deutsch, Feb 02 2016
EXAMPLE
For n = 6 we have:
--------------------------------------
. Number of
Partitions repeated parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 0
2 + 2 + 2 .................. 3
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 4
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
Total ..................... 24
So a(6) = 24.
MAPLE
b:= proc(n, i) option remember; local h, j, t;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i<1 then [0, 0]
else h:= [0, 0];
for j from 0 to iquo(n, i) do
t:= b(n-i*j, i-1);
h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*j)]
od; h
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011
g := add(x^(2*j)*(2-x^j)/(1-x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 02 2016
MATHEMATICA
myCount[p_List] := Module[{t}, If[p == {}, 0, t = Transpose[Tally[p]][[2]]; Sum[If[t[[i]] == 1, 0, t[[i]]], {i, Length[t]}]]]; Table[Total[Table[myCount[p], {p, IntegerPartitions[i]}]], {i, 0, 20}] (* T. D. Noe, Nov 19 2011 *)
b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h={0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]]+t[[1]], h[[2]]+t[[2]] + If[j<2, 0, t[[1]]*j]}]; h] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)
Table[Length[Flatten[Select[Flatten[Split[#]&/@IntegerPartitions[n], 1], Length[#]>1&]]], {n, 0, 60}] (* Harvey P. Dale, Jun 12 2024 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 19 2011
STATUS
approved