login
A194406
Numbers m such that Sum_{k=1..m} (<1/2 + k*e> - <k*e>) = 0 where < > denotes fractional part.
4
2, 4, 6, 8, 12, 26, 30, 32, 34, 36, 38, 40, 44, 58, 62, 64, 66, 68, 70, 74, 78, 80, 82, 84, 86, 90, 94, 96, 98, 100, 102, 106, 110, 112, 114, 116, 118, 122, 126, 128, 130, 132, 134, 138, 152, 156, 158, 160, 162, 164, 166, 170, 184, 188, 190, 192, 194, 196
OFFSET
1,1
COMMENTS
Every term is even; see A194368.
MATHEMATICA
r = E; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t1, 1]] (* A194405 *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t2, 1]] (* A194406 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t3, 1]] (* A194407 *)
CROSSREFS
Cf. A194368.
Sequence in context: A001217 A131885 A173941 * A371164 A087443 A059901
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 24 2011
STATUS
approved