login
A194400
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) > 0, where r=sqrt(15) and < > denotes fractional part.
4
7, 15, 23, 31, 39, 47, 55, 377, 385, 393, 401, 409, 417, 425, 433, 439, 440, 441, 447, 448, 449, 455, 456, 457, 463, 464, 465, 471, 472, 473, 479, 480, 481, 487, 488, 489, 495, 503, 511, 519, 527, 535, 543, 551
OFFSET
1,1
COMMENTS
See A194368.
MATHEMATICA
r = Sqrt[15]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t1, 1]] (* A194398 *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];
Flatten[Position[t2, 1]] (* A194399 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 800}];
Flatten[Position[t3, 1]] (* A194400 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 24 2011
STATUS
approved