login
A194374
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(5) and < > denotes fractional part.
3
4, 8, 12, 16, 72, 76, 80, 84, 88, 144, 148, 152, 156, 160, 216, 220, 224, 228, 232, 288, 292, 296, 300, 304, 1292, 1296, 1300, 1304, 1308, 1364, 1368, 1372, 1376, 1380, 1436, 1440, 1444, 1448, 1452, 1508, 1512, 1516, 1520, 1524, 1580, 1584, 1588, 1592, 1596, 2584, 2588, 2592, 2596
OFFSET
1,1
COMMENTS
See A194368.
MATHEMATICA
r = Sqrt[5]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t1, 1]] (* empty *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];
Flatten[Position[t2, 1]] (* A194374 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
Flatten[Position[t3, 1]] (* A194375 *)
PROG
(PARI) isok(m) = my(r=sqrt(5)); sum(k=1, m, frac(1/2+k*r)-frac(k*r)) == 0; \\ Michel Marcus, Jan 31 2023
CROSSREFS
Sequence in context: A071072 A175670 A355031 * A061085 A007883 A023706
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 23 2011
EXTENSIONS
More terms from Michel Marcus, Jan 31 2023
STATUS
approved