login
A194341
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=3-e.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0
OFFSET
1,13
COMMENTS
See A194285.
EXAMPLE
First ten rows:
1
1..1
1..1..1
1..1..1..1
1..1..2..0..1
1..1..1..1..1..1
1..1..1..1..1..1..1
0..1..2..1..1..1..1..1
0..1..2..0..1..2..1..0..2..1
MATHEMATICA
r = 3-E;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194341 *)
CROSSREFS
Cf. A193285.
Sequence in context: A265196 A171157 A194301 * A171905 A327406 A336865
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved