login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194338 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n, r=3-sqrt(5). 2
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 3, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A194285.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

First nine rows:

2

2..2

2..2..2

2..2..2..2

2..2..2..2..2

2..2..2..3..2..1

2..1..3..1..3..2..2

2..2..2..2..2..2..2..2

1..2..2..2..2..2..3..2..2

MATHEMATICA

r = 3-Sqrt[5];

f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}]

TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

Flatten[%]    (* A194338 *)

CROSSREFS

Cf. A194285.

Sequence in context: A105515 A105514 A214081 * A176170 A062153 A217693

Adjacent sequences:  A194335 A194336 A194337 * A194339 A194340 A194341

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 07:23 EDT 2019. Contains 325216 sequences. (Running on oeis4.)