login
A194337
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=3-sqrt(5).
2
1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 2, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1
OFFSET
1,3
COMMENTS
See A194285.
EXAMPLE
First nine rows:
1
0..2
1..1..1
1..1..1..1
1..1..1..1..1
1..1..0..2..2..0
1..0..2..1..1..2..0
2..0..2..0..2..0..2..0
1..1..1..1..1..1..1..2..0
MATHEMATICA
r = 3-Sqrt[5];
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194337 *)
CROSSREFS
Cf. A194285.
Sequence in context: A300547 A025452 A299202 * A365335 A376663 A299912
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved