login
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=2-sqrt(3).
2

%I #5 Mar 30 2012 18:57:43

%S 2,2,2,3,3,2,4,5,3,4,6,7,7,6,6,12,10,10,12,10,10,18,19,19,18,18,18,18,

%T 32,31,34,31,33,31,32,32,57,58,57,57,56,57,57,57,56,103,102,103,103,

%U 102,103,102,101,104,101,186,186,187,187,186,186,186,186,186,186

%N Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=2-sqrt(3).

%C See A194285.

%e First eight rows:

%e 2

%e 2...2

%e 3...3...2

%e 4...5...3...4

%e 6...7...7...6...6

%e 12..10..10..12..10..10

%e 18..19..19..18..18..18..18

%e 32..31..34..31..33..31..32..32

%t r = 2-Sqrt[3];

%t f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

%t g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]

%t TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

%t Flatten[%] (* A194332 *)

%Y Cf. A194285.

%K nonn,tabl

%O 1,1

%A _Clark Kimberling_, Aug 22 2011