This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194329 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=2-sqrt(3). 2
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS See A194285. LINKS EXAMPLE First eleven rows: 1 1..1 1..1..1 1..1..1..1 1..2..1..0..1 1..1..1..2..1..0 1..1..1..1..1..1..1 1..1..2..0..2..0..1..1 1..1..1..2..1..1..0..2..0 1..1..1..1..1..1..2..0..2..0 1..1..1..1..1..1..1..1..1..1..1 MATHEMATICA r = 2-Sqrt[3]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%]    (* A194329 *) CROSSREFS Cf. A194285. Sequence in context: A130654 A053259 A273107 * A321749 A143842 A092876 Adjacent sequences:  A194326 A194327 A194328 * A194330 A194331 A194332 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 22:14 EDT 2019. Contains 325168 sequences. (Running on oeis4.)