login
A194326
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n, r=2-sqrt(2).
2
2, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 2, 3, 1, 3, 1, 3, 1, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,1
COMMENTS
See A194285.
EXAMPLE
First ten rows:
2
2..2
1..3..2
2..1..3..2
2..2..2..2..2
2..2..2..2..2..2
2..3..1..2..3..1..2
2..2..3..1..3..1..3..1
2..2..1..3..2..2..2..2..2
1..3..2..2..1..3..2..3..1..2
MATHEMATICA
r = 2-Sqrt[2];
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194326 *)
CROSSREFS
Cf. A194285.
Sequence in context: A078687 A133138 A348193 * A295277 A194290 A329028
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved