%I #5 Mar 30 2012 18:57:42
%S 1,2,2,2,4,3,2,6,3,5,4,5,5,6,5,6,5,6,6,7,6,7,6,6,7,8,8,7,8,8,8,8,8,8,
%T 7,9,8,9,10,7,10,10,8,10,9,9,11,9,11,9,11,8,12,9,11,9,11,11,12,11,11,
%U 11,10,12,11,12,12,12,11,13,11,13,11,13,11,13,12,12,13,13,13,13
%N Triangular array: g(n,k)=number of fractional parts (i*sqrt(8)) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n.
%C See A194285.
%e First nine rows:
%e 1
%e 2...2
%e 2...4...3
%e 2...6...3...5
%e 4...5...5...6...5
%e 6...5...6...6...7...6
%e 7...6...6...7...8...8...7
%e 8...8...8...8...8...8...7...9
%e 8...9...10..7...10..10..8...10...9
%t r = Sqrt[8];
%t f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
%t TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t Flatten[%] (* A194319 *)
%Y Cf. A194285.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Aug 22 2011