login
Triangular array: g(n,k)=number of fractional parts (i*e) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.
2

%I #5 Mar 30 2012 18:57:42

%S 2,2,2,3,2,3,4,5,4,3,6,7,6,6,7,10,11,11,11,11,10,18,18,18,18,18,19,19,

%T 32,32,31,32,32,33,32,32,57,58,56,57,57,56,59,56,56,104,102,101,103,

%U 103,102,102,103,102,102,187,186,186,186,187,185,187,186,186,187

%N Triangular array: g(n,k)=number of fractional parts (i*e) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.

%C See A194285.

%e First eight rows:

%e 2

%e 2...2

%e 3...2...3

%e 4...5...4...3

%e 6...7...6...6...7

%e 10..11..11..11..11..10

%e 18..18..18..18..18..19..19

%e 32..32..31..32..32..33..32..32

%t r = E;

%t f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

%t g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]

%t TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

%t Flatten[%] (* A194312 *)

%Y Cf. A194285.

%K nonn,tabl

%O 1,1

%A _Clark Kimberling_, Aug 21 2011