login
A194290
Triangular array: g(n,k)=number of fractional parts (i*sqrt(3)) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n.
2
2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 3, 1, 2, 2, 2, 3, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2
OFFSET
1,1
COMMENTS
See A194285.
EXAMPLE
First eight rows:
2
2..2
1..3..2
2..2..2..2
2..2..2..2..2
2..2..2..2..2..2
2..2..2..2..2..3..1
2..2..1..2..2..3..2..2
MATHEMATICA
r = Sqrt[3];
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194290 *)
CROSSREFS
Cf. A194290.
Sequence in context: A348193 A194326 A295277 * A329028 A257079 A327567
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved