

A194287


Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k1)/n, k/n], for 1<=i<=n^2, 1<=k<=n.


2



1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 6, 5, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 7, 6, 7, 7, 9, 7, 8, 9, 7, 9, 8, 7, 8, 9, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 10, 10, 10, 10, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A194285.


LINKS

Table of n, a(n) for n=1..78.


EXAMPLE

First eight rows:
1
2..2
3..3..3
4..4..4..4
4..6..5..5..5
6..6..7..5..6..6
7..7..8..7..6..7..7
9..7..8..9..7..9..8..7


MATHEMATICA

r = Sqrt[2];
f[n_, k_, i_] := If[(k  1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194287 *)


CROSSREFS

Cf. A194285.
Sequence in context: A071996 A072747 A194295 * A194303 A124755 A033810
Adjacent sequences: A194284 A194285 A194286 * A194288 A194289 A194290


KEYWORD

nonn,tabl


AUTHOR

Clark Kimberling, Aug 21 2011


STATUS

approved



