login
A194148
Sum_{j=1..n} floor(j*(1/2 + sqrt(2))); n-th partial sum of Beatty sequence for 1/2 + sqrt(2).
1
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 143, 167, 193, 221, 251, 283, 317, 353, 391, 431, 473, 517, 562, 609, 658, 709, 762, 817, 874, 933, 994, 1057, 1122, 1188, 1256, 1326, 1398, 1472, 1548, 1626, 1706, 1788, 1872, 1958, 2046, 2135, 2226, 2319
OFFSET
1,2
LINKS
MATHEMATICA
c[n_] := Sum[Floor[j*(1/2+Sqrt[2])], {j, 1, n}];
c = Table[c[n], {n, 1, 90}]
Accumulate[Table[Floor[n(1/2+Sqrt[2])], {n, 50}]] (* Harvey P. Dale, May 26 2023 *)
PROG
(PARI) for(n=1, 60, print1(sum(j=1, n, floor(j*(sqrt(2) + 1/2))), ", ")) \\ G. C. Greubel, Oct 05 2018
(Magma) [(&+[Floor(k*(Sqrt(2) + 1/2)): k in [1..n]]): n in [1..60]]; // G. C. Greubel, Oct 05 2018
CROSSREFS
Cf. A137803 (Beatty sequence for 1/2 + sqrt(2)).
Sequence in context: A106545 A169920 A093837 * A162497 A216500 A370785
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved