login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum{floor(j*sqrt(11)) : 1<=j<=n}; n-th partial sum of Beatty sequence for sqrt(11).
1

%I #7 Feb 27 2023 08:06:22

%S 3,9,18,31,47,66,89,115,144,177,213,252,295,341,390,443,499,558,621,

%T 687,756,828,904,983,1065,1151,1240,1332,1428,1527,1629,1735,1844,

%U 1956,2072,2191,2313,2439,2568,2700,2835,2974,3116,3261,3410,3562,3717

%N Sum{floor(j*sqrt(11)) : 1<=j<=n}; n-th partial sum of Beatty sequence for sqrt(11).

%t c[n_] := Sum[Floor[j*Sqrt[11]], {j, 1, n}];

%t c = Table[c[n], {n, 1, 90}]

%Y Cf. A171982 (Beatty sequence for sqrt(11)).

%K nonn

%O 1,1

%A _Clark Kimberling_, Aug 16 2011