This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194099 Numbers m>=2, such that, if a prime p divides m^2-1, then every prime q
 3, 5, 7, 11, 17, 19, 29, 31, 41, 49, 71, 161, 251, 449, 769, 881, 1079, 1429, 3431, 4159, 4801, 6049, 8749, 19601, 24751, 246401, 388961, 1267111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No more terms <= 10^8. No more terms <= 2 * 10^38. [Charles R Greathouse IV, Aug 22 2011] All terms are odd. - Kausthub Gudipati, Aug 22 2011 LINKS Florian Luca and Filip Najman, On the largest prime factor of x^2 - 1. Math. Comp. 80 (2011), 429-435. FORMULA A055932 INTERSECT A005563. - R. J. Mathar, Aug 16 2011 EXAMPLE 881^2-1 = 776160 = 2^5 * 3^2 * 5 *7^2 * 11 (all primes <= 11 appear), so 881 is a term. MATHEMATICA Select[Range[1, 10^4], First@ # == 1 && If[Length@ # > 1, Union@ Differences@ # == {1}, True] &@ PrimePi@ Map[First, FactorInteger[#^2 - 1]] &] (* Michael De Vlieger, Jul 02 2016 *) PROG (PARI) isok(n) = my(f = factor(n^2-1)); #f~ == primepi(f[#f~, 1]); \\ Michel Marcus, Jul 02 2016 CROSSREFS Cf. A005563, A055932. Sequence in context: A290283 A163420 A155489 * A045396 A155779 A235476 Adjacent sequences:  A194096 A194097 A194098 * A194100 A194101 A194102 KEYWORD nonn,more AUTHOR Vladimir Shevelev, Aug 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 11:51 EST 2019. Contains 319356 sequences. (Running on oeis4.)