login
A194010
Mirror of the triangle A194009.
2
2, 5, 3, 13, 7, 4, 28, 17, 9, 5, 58, 35, 21, 11, 6, 114, 70, 42, 25, 13, 7, 218, 134, 82, 49, 29, 15, 8, 407, 251, 154, 94, 56, 33, 17, 9, 747, 461, 284, 174, 106, 63, 37, 19, 10, 1352, 835, 515, 317, 194, 118, 70, 41, 21, 11, 2420, 1495, 923, 569, 350, 214
OFFSET
0,1
COMMENTS
A194010 is obtained by reversing the rows of the triangle A194009.
FORMULA
Write w(n,k) for the triangle at A194009. The triangle at A194010 is then given by w(n,n-k).
EXAMPLE
First six rows:
2
5.....3
13....7....4
28....17...9....5
58....35...21...11...6
114...70...42...25...13...7
MATHEMATICA
z = 11;
p[n_, x_] := x*p[n - 1, x] + n + 1; p[0, n_] := 1;
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194009 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A194010 *)
CROSSREFS
Cf. A194009.
Sequence in context: A169852 A318189 A176914 * A229609 A242171 A254790
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 11 2011
STATUS
approved