login
A193976
Mirror of the triangle A193975.
2
2, 8, 3, 20, 11, 4, 40, 26, 14, 5, 70, 50, 32, 17, 6, 112, 85, 60, 38, 20, 7, 168, 133, 100, 70, 44, 23, 8, 240, 196, 154, 115, 80, 50, 26, 9, 330, 276, 224, 175, 130, 90, 56, 29, 10, 440, 375, 312, 252, 196, 145, 100, 62, 32, 11, 572, 495, 420, 348, 280, 217
OFFSET
0,1
COMMENTS
A193976 is obtained by reversing the rows of the triangle A193975.
FORMULA
Write w(n,k) for the triangle at A193975. The triangle at A193976 is then given by w(n,n-k).
EXAMPLE
First six rows:
2
8.....3
20....11...4
40....26...14...5
70....50...32...17...6
112...85...60...38...20...7
MATHEMATICA
z = 11;
p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 1;
q[n_, x_] := p[n, x];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193975 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193976 *)
CROSSREFS
Cf. A193975.
Sequence in context: A083003 A364130 A278117 * A264244 A292930 A126951
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved