login
A193941
G.f.: (1+x^3)/(1-x-x^6).
1
1, 1, 1, 2, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 30, 39, 50, 64, 82, 105, 135, 174, 224, 288, 370, 475, 610, 784, 1008, 1296, 1666, 2141, 2751, 3535, 4543, 5839, 7505, 9646, 12397, 15932, 20475, 26314, 33819, 43465, 55862, 71794, 92269, 118583, 152402
OFFSET
0,4
COMMENTS
The Ca1 sums, see A180662, of triangle A065941 equal the terms of this sequence.
FORMULA
G.f.: (1+x)*(1-x+x^2)/(1-x-x^6).
a(n) = A005708(n) + A005708(n-3).
MAPLE
A193941 := proc(n): coeftayl((1+x^3)/(1-x-x^6), x=0, n) end: seq(A193941(n), n=0..49);
MATHEMATICA
CoefficientList[Series[(1+x^3)/(1-x-x^6), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 1}, {1, 1, 1, 2, 2, 2}, 50] (* Harvey P. Dale, Apr 25 2014 *)
PROG
(PARI) Vec((1+x^3)/(1-x-x^6) + O(x^50)) \\ Jinyuan Wang, Apr 01 2020
CROSSREFS
Cf. A005708.
Sequence in context: A022866 A350701 A099388 * A239291 A022869 A359319
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Aug 11 2011
STATUS
approved