%I #5 Mar 30 2012 18:57:39
%S 1,1,1,2,3,1,4,9,7,2,7,21,25,14,3,12,46,75,64,28,5,20,94,195,224,148,
%T 53,8,33,185,468,679,603,326,99,13,54,353,1056,1855,2073,1502,687,181,
%U 21,88,659,2280,4711,6357,5786,3543,1405,327,34,143,1209,4755
%N Mirror of the triangle A193919.
%C A193920 is obtained by reversing the rows of the triangle A193919.
%F Write w(n,k) for the triangle at A193919. The triangle at A193920 is then given by w(n,n-k).
%e First six rows:
%e 1
%e 1....1
%e 2....3....1
%e 4....9....7....2
%e 7....21...25...14...3
%e 12...46...75...64...28...5
%t p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
%t q[n_, x_] := (x + 1)^n;
%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t g[n_] := CoefficientList[w[n, x], {x}]
%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193919 *)
%t TableForm[Table[g[n], {n, -1, z}]]
%t Flatten[Table[g[n], {n, -1, z}]] (* A193920 *)
%Y Cf. A193919.
%K nonn,tabl
%O 0,4
%A _Clark Kimberling_, Aug 09 2011