%I #5 Mar 30 2012 18:57:39
%S 1,2,1,8,5,2,23,14,8,3,63,39,23,13,5,167,103,63,37,21,8,440,272,167,
%T 102,60,34,13,1154,713,440,270,165,97,55,21,3024,1869,1154,712,437,
%U 267,157,89,34,7919,4894,3024,1867,1152,707,432,254,144,55,20735,12815
%N Mirror of the triangle A193906.
%C A193907 is obtained by reversing the rows of the triangle A193906.
%F Write w(n,k) for the triangle at A193906. The triangle at A193907 is then given by w(n,n-k).
%e First six rows:
%e 1
%e 2....1
%e 8....5....2
%e 23...14...8....3
%e 63...39...23...13...5
%e 167..103..63...37...21...8
%t z = 12;
%t p[n_, x_] := Sum[Fibonacci[k + 2]*x^(n - k), {k, 0, n}];
%t q[n_, x_] := p[n, x]
%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t g[n_] := CoefficientList[w[n, x], {x}]
%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193906 *)
%t TableForm[Table[g[n], {n, -1, z}]]
%t Flatten[Table[g[n], {n, -1, z}]] (* A193907 *)
%Y Cf. A193906.
%K nonn,tabl
%O 0,2
%A _Clark Kimberling_, Aug 08 2011