login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193871 Square array T(n,k) = k^n - k + 1 read by antidiagonals. 3
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 13, 1, 1, 31, 79, 61, 21, 1, 1, 63, 241, 253, 121, 31, 1, 1, 127, 727, 1021, 621, 211, 43, 1, 1, 255, 2185, 4093, 3121, 1291, 337, 57, 1, 1, 511, 6559, 16381, 15621, 7771, 2395, 505, 73, 1, 1, 1023, 19681, 65533, 78121, 46651, 16801, 4089, 721, 91, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The columns give 1^n-0, 2^n-1, 3^n-2, 4^n-3, 5^n-4, etc.

The main diagonal gives A006091, which is a sequence related to the famous "coconuts" problem.

LINKS

Table of n, a(n) for n=1..66.

M. B. Richardson, A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128

EXAMPLE

Array begins:

1,   1,    1,     1,     1,    1,    1,   1,   1,   1

1,   3,    7,    13,    21,   31,   43,  57,  73

1,   7,   25,    61,   121,  211,  337, 505

1,  15,   79,   253,   621, 1291, 2395

1,  31,  241,  1021,  3121, 7771

1,  63,  727,  4093, 15621

1, 127, 2185, 16381

1, 255, 6559

1, 511

1

MATHEMATICA

Table[k^# - k + 1 &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Nov 16 2016 *)

CROSSREFS

Row 1: A000012. Rows 2,3: A002061, A061600 but both without repetitions.

Columns 1..10: A000012, positives A000225, A058481, A141725, A164785, A164784, A164783, A164786, A177095, A170955.

Cf. A276135.

Sequence in context: A157836 A205497 A063394 * A108470 A157152 A136126

Adjacent sequences:  A193868 A193869 A193870 * A193872 A193873 A193874

KEYWORD

nonn,tabl,easy

AUTHOR

Omar E. Pol, Aug 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)