login
A193871
Square array T(n,k) = k^n - k + 1 read by antidiagonals.
3
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 13, 1, 1, 31, 79, 61, 21, 1, 1, 63, 241, 253, 121, 31, 1, 1, 127, 727, 1021, 621, 211, 43, 1, 1, 255, 2185, 4093, 3121, 1291, 337, 57, 1, 1, 511, 6559, 16381, 15621, 7771, 2395, 505, 73, 1, 1, 1023, 19681, 65533, 78121, 46651, 16801, 4089, 721, 91, 1
OFFSET
1,5
COMMENTS
The columns give 1^n-0, 2^n-1, 3^n-2, 4^n-3, 5^n-4, etc.
The main diagonal gives A006091, which is a sequence related to the famous "coconuts" problem.
LINKS
M. B. Richardson, A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 3, 7, 13, 21, 31, 43, 57, 73
1, 7, 25, 61, 121, 211, 337, 505
1, 15, 79, 253, 621, 1291, 2395
1, 31, 241, 1021, 3121, 7771
1, 63, 727, 4093, 15621
1, 127, 2185, 16381
1, 255, 6559
1, 511
1
MATHEMATICA
Table[k^# - k + 1 &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Nov 16 2016 *)
CROSSREFS
Row 1: A000012. Rows 2,3: A002061, A061600 but both without repetitions.
Cf. A276135.
Sequence in context: A205497 A063394 A344527 * A108470 A328300 A157152
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Aug 21 2011
STATUS
approved