login
Triangular array: the fission of ((2x+1)^n) by (q(n,x)), where q(n,x)=x^n+x^(n-1)+...+x+1.
5

%I #9 Jul 16 2013 10:00:27

%S 1,1,5,1,7,19,1,9,33,65,1,11,51,131,211,1,13,73,233,473,665,1,15,99,

%T 379,939,1611,2059,1,17,129,577,1697,3489,5281,6305,1,19,163,835,2851,

%U 6883,12259,16867,19171,1,21,201,1161,4521,12585,26025,41385,52905

%N Triangular array: the fission of ((2x+1)^n) by (q(n,x)), where q(n,x)=x^n+x^(n-1)+...+x+1.

%C See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.

%F From _Peter Bala_, Jul 16 2013: (Start)

%F T(n,k) = sum {i = 0..k} binomial(n+1,k-i)*2^(k-i) for 0 <= k <= n.

%F O.g.f.: 1/( (1 - 3*x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 5*x)*t + (1 + 7*x + 19*x^2)*t^2 + ....

%F The n-th row polynomial R(n,x) = 1/(1 - x)*( (2*x + 1)^(n+1) - (3*x)^(n+1) ). Cf. A193823. (End)

%e First six rows:

%e 1

%e 1...5

%e 1...7....19

%e 1...9....33...65

%e 1...11...51...131...211

%e 1...13...73...233...473...665

%t z = 10;

%t p[n_, x_] := (2 x + 1)^n;

%t q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1;

%t p1[n_, k_] := Coefficient[p[n, x], x^k];

%t p1[n_, 0] := p[n, x] /. x -> 0;

%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]

%t h[n_] := CoefficientList[d[n, x], {x}]

%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]

%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193860 *)

%t TableForm[Table[h[n], {n, 0, z}]]

%t Flatten[Table[h[n], {n, -1, z}]] (* A193861 *)

%Y Cf. A193842, A193861. A193823.

%K nonn,tabl

%O 0,3

%A _Clark Kimberling_, Aug 07 2011