login
A193819
Mirror of the triangle A193818.
2
1, 1, 2, 2, 6, 4, 3, 12, 16, 8, 4, 20, 40, 40, 16, 5, 30, 80, 120, 96, 32, 6, 42, 140, 280, 336, 224, 64, 7, 56, 224, 560, 896, 896, 512, 128, 8, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 9, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512, 10, 110, 660
OFFSET
0,3
COMMENTS
A193819 is obtained by reversing the rows of the triangle A193818.
FORMULA
Write w(n,k) for the triangle at A193818. The triangle at A193819 is then given by w(n,n-k).
Triangle T(n,k), read by rows, given by (1,1,-1,1,0,0,0,0,0,0,0,...) DELTA (2,0,-2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
T(n,k) = A153861(n,k)*2^k. - Philippe Deléham, Oct 09 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(0,0)=T(1,0)=1, T(1,1)=T(2,0)=2, T(2,1)=6, T(2,2)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x+x^2+2*x^2*y)/((x-1)*(-1+x+2*x*y)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First six rows:
1;
1, 2;
2, 6, 4;
3, 12, 16, 8;
4, 20, 40, 40, 16;
5, 30, 80, 120, 96, 32;
MATHEMATICA
z = 10; c = 2; d = 1;
p[0, x_] := 1
p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193818 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193819 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 06 2011
STATUS
approved