OFFSET
1,1
COMMENTS
R is a perfect Wichmann ruler iff R is a perfect ruler (for definition see A103294) and there exist two integers r>=0 and s>=0 such that the type of the difference representation of the ruler is [1*r, r+1, (2r+1)*r, (4r+3)*s, (2r+2)*(r+1), 1*r].
LINKS
L. Egidi and G. Manzini, Spaced seeds design using perfect rulers, Tech. Rep. CS Department Universita del Piemonte Orientale, June 2011.
Peter Luschny, Perfect rulers
B. Wichmann, A note on restricted difference bases, J. Lond. Math. Soc. 38 (1963), 465-466.
EXAMPLE
[0, 1, 2, 5, 10, 15, 26, 37, 48, 54, 60, 66, 67, 68] is a perfect Wichmann ruler with length 68 of Wichmann type (2,3). By contrast [0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68] is a perfect ruler with length 68 which is not a Wichmann ruler.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Peter Luschny, Oct 22 2011
STATUS
approved