login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193798 Triangular array:  the fusion of polynomial sequences P and Q given by p(n,x)=(3x+2)^n and q(n,x)=1+x^n. 2
1, 1, 1, 2, 3, 5, 4, 12, 9, 25, 8, 36, 54, 27, 125, 16, 96, 216, 216, 81, 625, 32, 240, 720, 1080, 810, 243, 3125, 64, 576, 2160, 4320, 4860, 2916, 729, 15625, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 78125, 256, 3072, 16128, 48384, 90720 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.

LINKS

Table of n, a(n) for n=0..49.

EXAMPLE

First six rows:

1

1....1

2....3....5

4....12...9.....25

8....36...54....27...125

16...96...216...216..81...625

MATHEMATICA

z = 8; a = 3; b = 2;

p[n_, x_] := (a*x + b)^n

q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;

t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

g[n_] := CoefficientList[w[n, x], {x}]

TableForm[Table[Reverse[g[n]], {n, -1, z}]]

Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193798 *)

TableForm[Table[g[n], {n, -1, z}]]

Flatten[Table[g[n], {n, -1, z}]]  (* A193799 *)

CROSSREFS

Cf. A193722, A193799.

Sequence in context: A023395 A316655 A318848 * A101409 A271862 A131401

Adjacent sequences:  A193795 A193796 A193797 * A193799 A193800 A193801

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 13:23 EST 2018. Contains 318149 sequences. (Running on oeis4.)