This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193798 Triangular array:  the fusion of polynomial sequences P and Q given by p(n,x)=(3x+2)^n and q(n,x)=1+x^n. 2
 1, 1, 1, 2, 3, 5, 4, 12, 9, 25, 8, 36, 54, 27, 125, 16, 96, 216, 216, 81, 625, 32, 240, 720, 1080, 810, 243, 3125, 64, 576, 2160, 4320, 4860, 2916, 729, 15625, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 78125, 256, 3072, 16128, 48384, 90720 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. LINKS EXAMPLE First six rows: 1 1....1 2....3....5 4....12...9.....25 8....36...54....27...125 16...96...216...216..81...625 MATHEMATICA z = 8; a = 3; b = 2; p[n_, x_] := (a*x + b)^n q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193798 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]]  (* A193799 *) CROSSREFS Cf. A193722, A193799. Sequence in context: A023395 A316655 A318848 * A101409 A271862 A131401 Adjacent sequences:  A193795 A193796 A193797 * A193799 A193800 A193801 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 13:23 EST 2018. Contains 318149 sequences. (Running on oeis4.)