login
A193796
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(2x+3)^n and q(n,x)=1+x^n.
2
1, 1, 1, 3, 2, 5, 9, 12, 4, 25, 27, 54, 36, 8, 125, 81, 216, 216, 96, 16, 625, 243, 810, 1080, 720, 240, 32, 3125, 729, 2916, 4860, 4320, 2160, 576, 64, 15625, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 78125, 6561, 34992, 81648, 108864, 90720
OFFSET
0,4
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1....1
3....2....5
9....12...4....25
27...54...36...8...125
81...216..216..96..16...625
MATHEMATICA
z = 8; a = 2; b = 3;
p[n_, x_] := (a*x + b)^n
q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193796 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193797 *)
CROSSREFS
Sequence in context: A257705 A257878 A243700 * A249906 A258930 A002797
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 05 2011
STATUS
approved