login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193788 Triangular array:  the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n. 2
1, 1, 1, 2, 1, 3, 4, 4, 1, 9, 8, 12, 6, 1, 27, 16, 32, 24, 8, 1, 81, 32, 80, 80, 40, 10, 1, 243, 64, 192, 240, 160, 60, 12, 1, 729, 128, 448, 672, 560, 280, 84, 14, 1, 2187, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 6561, 512, 2304, 4608, 5376, 4032, 2016 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.

LINKS

Table of n, a(n) for n=0..60.

EXAMPLE

First six rows:

1

1....1

2....1....3

4....4....1....9

8....12...6....1...27

16...32...24...8...1...81

(viz., A038207 with row sums at end of rows)

MATHEMATICA

z = 10; a = 1; b = 2;

p[n_, x_] := (a*x + b)^n

q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;

t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

g[n_] := CoefficientList[w[n, x], {x}]

TableForm[Table[Reverse[g[n]], {n, -1, z}]]

Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193788 *)

TableForm[Table[g[n], {n, -1, z}]]

Flatten[Table[g[n], {n, -1, z}]]  (* A193789 *)

CROSSREFS

Cf. A193722, A038207, A193789.

Sequence in context: A128270 A151550 A097003 * A109447 A088261 A248393

Adjacent sequences:  A193785 A193786 A193787 * A193789 A193790 A193791

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Aug 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 18:03 EDT 2019. Contains 328102 sequences. (Running on oeis4.)