login
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n.
1

%I #5 Mar 30 2012 18:57:38

%S 1,1,1,1,1,2,1,2,1,4,1,3,3,1,8,1,4,6,4,1,16,1,5,10,10,5,1,32,1,6,15,

%T 20,15,6,1,64,1,7,21,35,35,21,7,1,128,1,8,28,56,70,56,28,8,1,256,1,9,

%U 36,84,126,126,84,36,9,1,512,1,10,45,120,210,252,210,120,45,10,1

%N Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n.

%C See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. A193787 is the mirror (obtained by reversing rows) of A193554.

%e First six rows:

%e 1

%e 1....1

%e 1....1....2

%e 1....2....1....4

%e 1....3....3....1...8

%e 1....4....6....4...1...16

%e (viz., Pascal's triangle with row sum at end of each row)

%t z = 12; a = 1; b = 1;

%t p[n_, x_] := (a*x + b)^n

%t q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;

%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

%t g[n_] := CoefficientList[w[n, x], {x}]

%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]

%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193787 *)

%t TableForm[Table[g[n], {n, -1, z}]]

%t Flatten[Table[g[n], {n, -1, z}]] (* A193554 *)

%Y Cf. A193722, A193554.

%K nonn,tabl

%O 0,6

%A _Clark Kimberling_, Aug 05 2011