|
|
A193776
|
|
Number of signed permutations of length n invariant under the reverse complement and avoiding (-2, -1), (-2, 1), (2, -1).
|
|
0
|
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..9.
|
|
FORMULA
|
a(2k) = 2^k k! + \sum_{j=0}^{k-1}(k-j-1)! a(2j)
a(2k+1) = (2^k + 1)k! + \sum_{j=0}^{k-1}(k-j-1)! a(2j+1)
|
|
EXAMPLE
|
For n = 2, the permutations are (1, 2), (2, 1), (-1, -2), (-2, -1).
|
|
CROSSREFS
|
Sequence in context: A002139 A140489 A331101 * A051915 A064688 A089891
Adjacent sequences: A193773 A193774 A193775 * A193777 A193778 A193779
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Andy Hardt, Aug 04 2011
|
|
STATUS
|
approved
|
|
|
|