This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193767 The number of dominoes in a largest saturated domino covering of the 4 by n board. 4
 2, 5, 8, 12, 14, 17, 21, 24, 26, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell. LINKS Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011 Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(n) = 3n, except for n = 1, 2, 3, 5, 6 or 9. For the exceptions a(n) = 3n-1. a(n) = 4n - A193768(n). a(n) = 2*a(n-1)-a(n-2) for n>11. - Colin Barker, Oct 05 2014 G.f.: -x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2) / (x-1)^2. - Colin Barker, Oct 05 2014 EXAMPLE You have to have at least two dominoes to cover the 1 by 4 board, each covering the corner. After that anything else you can remove. Hence a(1) = 2. PROG (PARI) Vec(-x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2)/(x-1)^2 + O(x^100)) \\ Colin Barker, Oct 05 2014 CROSSREFS Cf. A193764, A193765, A193766, A193768. Sequence in context: A073837 A189531 A190347 * A209295 A184813 A108311 Adjacent sequences:  A193764 A193765 A193766 * A193768 A193769 A193770 KEYWORD nonn,easy AUTHOR Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 00:12 EST 2019. Contains 329310 sequences. (Running on oeis4.)