login
Let F(x) = 1 + 1*x + 4*x^2 + 10*x^3 + ..., the g.f. for A000293 (solid partitions), and write F(x) = 1/Product_{n>=1} E(n)^a(n) where E(n) = Product_{k>=n} (1 - x^(n*k)).
2

%I #9 Jan 03 2021 14:07:58

%S 1,2,5,7,14,12,25,24,40,51,96,93,111,-5,-206,-530,-736,-591,778,3819,

%T 9292,16373,23055,23706,10101,-31727,-120766,-283232,-548925,-932041,

%U -1380126,-1654576,-1144753,1386362,7943163,21084398,42787784,71815410,98995079,100388956,29623770,-187442482,-648478235,-1449118398,-2615085854,-3963369427,-4855203952,-3819950381,1908741941,16724652946

%N Let F(x) = 1 + 1*x + 4*x^2 + 10*x^3 + ..., the g.f. for A000293 (solid partitions), and write F(x) = 1/Product_{n>=1} E(n)^a(n) where E(n) = Product_{k>=n} (1 - x^(n*k)).

%Y Cf. A037452 (expansion 1/Product_{n>=1} (1 - x^n)^a(n)), A000293 (solid partitions).

%K sign

%O 0,2

%A _Joerg Arndt_, Aug 03 2011