login
Decimal expansion of Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128.
3

%I #19 Oct 25 2017 05:10:27

%S 1,4,0,0,2,4,1,0,1,7,0,6,8,5,2,3,1,7,1,0,0,2,7,0,5,7,8,8,7,5,5,3,5,0,

%T 7,5,3,2,2,4,2,8,2,1,2,7,8,5,7,7,0,5,0,8,9,8,8,1,8,5,9,6,3,1,4,1,1,6,

%U 2,7,7,1,4,6,3,7,0,5,9,7,0,2,3,0,4,9,0,7,6,1,1,0,2,6,6,3,0,9,0,5

%N Decimal expansion of Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128.

%C The absolute value of the integral {x=0..Pi/2} x^3*log(sin(x )) dx or (d^3/da^3 (integral {x=0..Pi/2} sin(ax )*log(sin(x )) dx)) at a=0. The absolute value of (sum {n=1..infinity} (limit { a -> 0} (d^3/da^3 ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(Pi/2)^4*log(2)/4. [_Seiichi Kirikami_ and _Peter J. C. Moses_]

%D I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series and Products, 4th edition, 1.441.2, log(sin(x))=-(sum {1..infinity} cos(2nx)/n)-log(2).

%H S. Koyama and N. Kurokawa, <a href="https://doi.org/10.1090/S0002-9939-04-07863-3">Euler’s integrals and multiple sine functions</a>, Proc. Amer. Math. Soc. 133(2005), 1257-1265.

%F Equals A092425*A002162/64-9*A002388*A002117/64+93*A013663/128.

%e -0.14002410170685231710...

%t RealDigits[N[(2 Pi^4 Log[2] - 18 Pi^2 Zeta[3] + 93 Zeta[5]) / 128, 105]][[1]]

%o (PARI) Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128 \\ _Michel Marcus_, Oct 25 2017

%Y Cf. A173623, A173624, A193716.

%K cons,nonn

%O 0,2

%A _Seiichi Kirikami_, Aug 03 2011